Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression.

Identifieur interne : 003369 ( Main/Exploration ); précédent : 003368; suivant : 003370

Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression.

Auteurs : Angela Cicatelli [Italie] ; Guido Lingua ; Valeria Todeschini ; Stefania Biondi ; Patrizia Torrigiani ; Stefano Castiglione

Source :

RBID : pubmed:20810743

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

It is increasingly evident that plant tolerance to stress is improved by mycorrhiza. Thus, suitable plant-fungus combinations may also contribute to the success of phytoremediation of heavy metal (HM)-polluted soil. Metallothioneins (MTs) and polyamines (PAs) are implicated in the response to HM stress in several plant species, but whether the response is modulated by arbuscular mycorrhizal fungi (AMF) remains to be clarified. The aim of the present study was to check whether colonization by AMF could modify growth, metal uptake/translocation, and MT and PA gene expression levels in white poplar cuttings grown on HM-contaminated soil, and to compare this with plants grown on non-contaminated soil.

METHODS

In this greenhouse study, plants of a Populus alba clone were pre-inoculated, or not, with either Glomus mosseae or G. intraradices and then grown in pots containing either soil collected from a multimetal- (Cu and Zn) polluted site or non-polluted soil. The expression of MT and PA biosynthetic genes was analysed in leaves using quantitative reverse transcription-PCR. Free and conjugated foliar PA concentrations were determined in parallel.

RESULTS

On polluted soil, AMF restored plant biomass despite higher Cu and Zn accumulation in plant organs, especially roots. Inoculation with the AMF caused an overall induction of PaMT1, PaMT2, PaMT3, PaSPDS1, PaSPDS2 and PaADC gene expression, together with increased free and conjugated PA levels, in plants grown on polluted soil, but not in those grown on non-polluted soil.

CONCLUSIONS

Mycorrhizal plants of P. alba clone AL35 exhibit increased capacity for stabilization of soil HMs, together with improved growth. Their enhanced stress tolerance may derive from the transcriptional upregulation of several stress-related genes, and the protective role of PAs.


DOI: 10.1093/aob/mcq170
PubMed: 20810743
PubMed Central: PMC2958786


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression.</title>
<author>
<name sortKey="Cicatelli, Angela" sort="Cicatelli, Angela" uniqKey="Cicatelli A" first="Angela" last="Cicatelli">Angela Cicatelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Chimica, Università di Salerno, Stecca 7, Via Ponte don Melillo, 84084 Fisciano (SA), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Chimica, Università di Salerno, Stecca 7, Via Ponte don Melillo, 84084 Fisciano (SA)</wicri:regionArea>
<wicri:noRegion>84084 Fisciano (SA)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lingua, Guido" sort="Lingua, Guido" uniqKey="Lingua G" first="Guido" last="Lingua">Guido Lingua</name>
</author>
<author>
<name sortKey="Todeschini, Valeria" sort="Todeschini, Valeria" uniqKey="Todeschini V" first="Valeria" last="Todeschini">Valeria Todeschini</name>
</author>
<author>
<name sortKey="Biondi, Stefania" sort="Biondi, Stefania" uniqKey="Biondi S" first="Stefania" last="Biondi">Stefania Biondi</name>
</author>
<author>
<name sortKey="Torrigiani, Patrizia" sort="Torrigiani, Patrizia" uniqKey="Torrigiani P" first="Patrizia" last="Torrigiani">Patrizia Torrigiani</name>
</author>
<author>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20810743</idno>
<idno type="pmid">20810743</idno>
<idno type="doi">10.1093/aob/mcq170</idno>
<idno type="pmc">PMC2958786</idno>
<idno type="wicri:Area/Main/Corpus">003077</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003077</idno>
<idno type="wicri:Area/Main/Curation">003077</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003077</idno>
<idno type="wicri:Area/Main/Exploration">003077</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression.</title>
<author>
<name sortKey="Cicatelli, Angela" sort="Cicatelli, Angela" uniqKey="Cicatelli A" first="Angela" last="Cicatelli">Angela Cicatelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Chimica, Università di Salerno, Stecca 7, Via Ponte don Melillo, 84084 Fisciano (SA), Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Chimica, Università di Salerno, Stecca 7, Via Ponte don Melillo, 84084 Fisciano (SA)</wicri:regionArea>
<wicri:noRegion>84084 Fisciano (SA)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lingua, Guido" sort="Lingua, Guido" uniqKey="Lingua G" first="Guido" last="Lingua">Guido Lingua</name>
</author>
<author>
<name sortKey="Todeschini, Valeria" sort="Todeschini, Valeria" uniqKey="Todeschini V" first="Valeria" last="Todeschini">Valeria Todeschini</name>
</author>
<author>
<name sortKey="Biondi, Stefania" sort="Biondi, Stefania" uniqKey="Biondi S" first="Stefania" last="Biondi">Stefania Biondi</name>
</author>
<author>
<name sortKey="Torrigiani, Patrizia" sort="Torrigiani, Patrizia" uniqKey="Torrigiani P" first="Patrizia" last="Torrigiani">Patrizia Torrigiani</name>
</author>
<author>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Blotting, Northern (MeSH)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Copper (metabolism)</term>
<term>Metallothionein (metabolism)</term>
<term>Metals, Heavy (metabolism)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Polyamines (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Cuivre (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (physiologie)</term>
<term>Métallothionéine (métabolisme)</term>
<term>Métaux lourds (métabolisme)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Polyamines (métabolisme)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Technique de Northern (MeSH)</term>
<term>Zinc (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Copper</term>
<term>Metallothionein</term>
<term>Metals, Heavy</term>
<term>Plant Proteins</term>
<term>Polyamines</term>
<term>Soil Pollutants</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cuivre</term>
<term>Métallothionéine</term>
<term>Métaux lourds</term>
<term>Polluants du sol</term>
<term>Polyamines</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Blotting, Northern</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase liquide à haute performance</term>
<term>Dépollution biologique de l'environnement</term>
<term>RT-PCR</term>
<term>Technique de Northern</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>It is increasingly evident that plant tolerance to stress is improved by mycorrhiza. Thus, suitable plant-fungus combinations may also contribute to the success of phytoremediation of heavy metal (HM)-polluted soil. Metallothioneins (MTs) and polyamines (PAs) are implicated in the response to HM stress in several plant species, but whether the response is modulated by arbuscular mycorrhizal fungi (AMF) remains to be clarified. The aim of the present study was to check whether colonization by AMF could modify growth, metal uptake/translocation, and MT and PA gene expression levels in white poplar cuttings grown on HM-contaminated soil, and to compare this with plants grown on non-contaminated soil.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>In this greenhouse study, plants of a Populus alba clone were pre-inoculated, or not, with either Glomus mosseae or G. intraradices and then grown in pots containing either soil collected from a multimetal- (Cu and Zn) polluted site or non-polluted soil. The expression of MT and PA biosynthetic genes was analysed in leaves using quantitative reverse transcription-PCR. Free and conjugated foliar PA concentrations were determined in parallel.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>On polluted soil, AMF restored plant biomass despite higher Cu and Zn accumulation in plant organs, especially roots. Inoculation with the AMF caused an overall induction of PaMT1, PaMT2, PaMT3, PaSPDS1, PaSPDS2 and PaADC gene expression, together with increased free and conjugated PA levels, in plants grown on polluted soil, but not in those grown on non-polluted soil.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Mycorrhizal plants of P. alba clone AL35 exhibit increased capacity for stabilization of soil HMs, together with improved growth. Their enhanced stress tolerance may derive from the transcriptional upregulation of several stress-related genes, and the protective role of PAs.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20810743</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>106</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression.</ArticleTitle>
<Pagination>
<MedlinePgn>791-802</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcq170</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">It is increasingly evident that plant tolerance to stress is improved by mycorrhiza. Thus, suitable plant-fungus combinations may also contribute to the success of phytoremediation of heavy metal (HM)-polluted soil. Metallothioneins (MTs) and polyamines (PAs) are implicated in the response to HM stress in several plant species, but whether the response is modulated by arbuscular mycorrhizal fungi (AMF) remains to be clarified. The aim of the present study was to check whether colonization by AMF could modify growth, metal uptake/translocation, and MT and PA gene expression levels in white poplar cuttings grown on HM-contaminated soil, and to compare this with plants grown on non-contaminated soil.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">In this greenhouse study, plants of a Populus alba clone were pre-inoculated, or not, with either Glomus mosseae or G. intraradices and then grown in pots containing either soil collected from a multimetal- (Cu and Zn) polluted site or non-polluted soil. The expression of MT and PA biosynthetic genes was analysed in leaves using quantitative reverse transcription-PCR. Free and conjugated foliar PA concentrations were determined in parallel.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">On polluted soil, AMF restored plant biomass despite higher Cu and Zn accumulation in plant organs, especially roots. Inoculation with the AMF caused an overall induction of PaMT1, PaMT2, PaMT3, PaSPDS1, PaSPDS2 and PaADC gene expression, together with increased free and conjugated PA levels, in plants grown on polluted soil, but not in those grown on non-polluted soil.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Mycorrhizal plants of P. alba clone AL35 exhibit increased capacity for stabilization of soil HMs, together with improved growth. Their enhanced stress tolerance may derive from the transcriptional upregulation of several stress-related genes, and the protective role of PAs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cicatelli</LastName>
<ForeName>Angela</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Chimica, Università di Salerno, Stecca 7, Via Ponte don Melillo, 84084 Fisciano (SA), Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lingua</LastName>
<ForeName>Guido</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Todeschini</LastName>
<ForeName>Valeria</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Biondi</LastName>
<ForeName>Stefania</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Torrigiani</LastName>
<ForeName>Patrizia</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Castiglione</LastName>
<ForeName>Stefano</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011073">Polyamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9038-94-2</RegistryNumber>
<NameOfSubstance UI="D008668">Metallothionein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008668" MajorTopicYN="N">Metallothionein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011073" MajorTopicYN="N">Polyamines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20810743</ArticleId>
<ArticleId IdType="pii">mcq170</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcq170</ArticleId>
<ArticleId IdType="pmc">PMC2958786</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chemosphere. 2007 Apr;67(6):1117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17078985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2007 Jan;45(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17303429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Apr;20(2):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17068660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2007 Jun;68(4):686-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17346769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Jun;147(3):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17118259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Jul;148(1):155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1055-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Geochem Health. 2007 Dec;29(6):473-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17874190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2008 Jan;34(1):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17356805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 May;153(1):137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Jun;153(3):497-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Aug;228(3):367-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18594857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 Mar;157(3):922-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19062143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 Jul;157(7):2108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19285369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Aug;28(8):1179-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2010 Jan;108(1):236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19566717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2010 Feb;19(1):91-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19544002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 May;231(6):1237-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20221631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Jun;20(5):315-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19921284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Feb;214(4):653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11925050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:159-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jan;17(1):6-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2004 Feb;42(2):149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Oct 8;323(1):72-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Feb;58(8):995-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15664607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 May;15(3):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C. 2005 Mar-Apr;60(3-4):357-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Jun;162(6):634-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16008086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Dec;16(1):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16136340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Feb;11(2):80-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16406305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Oct;16(7):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(3):391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17118971</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Biondi, Stefania" sort="Biondi, Stefania" uniqKey="Biondi S" first="Stefania" last="Biondi">Stefania Biondi</name>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
<name sortKey="Lingua, Guido" sort="Lingua, Guido" uniqKey="Lingua G" first="Guido" last="Lingua">Guido Lingua</name>
<name sortKey="Todeschini, Valeria" sort="Todeschini, Valeria" uniqKey="Todeschini V" first="Valeria" last="Todeschini">Valeria Todeschini</name>
<name sortKey="Torrigiani, Patrizia" sort="Torrigiani, Patrizia" uniqKey="Torrigiani P" first="Patrizia" last="Torrigiani">Patrizia Torrigiani</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Cicatelli, Angela" sort="Cicatelli, Angela" uniqKey="Cicatelli A" first="Angela" last="Cicatelli">Angela Cicatelli</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003369 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003369 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20810743
   |texte=   Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20810743" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020